骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

我们的最后两片拼图,陈氏类和黎奇曲率,是彼此相关的,它们是源自于几何学家尝试将黎曼面从复一维推广到多维,并从数学上刻画这些推广结果之间差别的努力。

这把我们带到一个重要定理:高斯—博内定理,它适用于紧致黎曼曲面,以及其他任何无边界的紧致曲面。

“边界”在拓扑中的定义很直观:圆盘是有边界的,亦即有明确界定的边缘,而球面则没有。在球面上,不管你朝哪个方向走,而且不管走多远,都不会碰到或接近任何边缘。

这个定理是在19世纪时由高斯和法国数学家博内(pierre bonnet)所提出的,它建立了曲面的几何性质及其拓扑性质之间的关系。

高斯—博内公式是说,上述曲面的总高斯曲率(或高斯曲率的积分)等于2π乘以该曲面的“欧拉示性数”(Euler characteristic)。而欧拉示性数x(希腊字母chi)则又等于2-2g,其中g是曲面的亏格(也就是曲面的“洞”数或“把手”数)。举例来说,二维球面没有洞,所以它的欧拉示性数是2。在此之前,欧拉提出了另一条求任何多面体欧拉示性数的公式:x=V-E+F,其中V是顶点数,E是边数,F是面数。以四面体为例,x=4-6+4=2,与球面的x值相同。一个立方体有8个顶点、12个边和6个面,所以x=8-12+6=2,再次和球面相同。因为欧拉示性数只和物体的拓扑,而非几何形状有关,那么这些几何相异,但拓扑相同的物体有着相同的x值当然很合理。欧拉示性数x是空间的第一个主要的“拓扑不变量”,也就是在拓扑等价但外观可能极为不同的各个空间上(例如球面、四面体和立方体),都能维持不变的性质。再回到高斯—博内公式。由此,二维球面的总高斯曲率是2πx2=4π。至于二维环面,因为它的x是0(2-2g=2-2=0),所以环面的总高斯曲率是0。把高斯—博内的原理推广到更高维,就会把我们带到陈氏类。

一个可赋向(或是有两面)的曲面,拓扑上可由其欧拉示性数来描述。计算多面体的欧拉示性数有一条简单的公式(多面体即是由平坦的面和直线的边所构成的形体)。欧拉示性数x等于顶点数减边数,再加上面数。对于本图所示的长方体,其值为2。四面体的欧拉示性数也是2(=4-6+4),四角锥也同样是2(=5-8+5)。因为这些物体都是拓扑等价的,所以它们理所当然有着相同的欧拉示性数2

陈氏类是由我的指导老师陈省身所发展的理论,是一种在数学上刻画不同复流形的概略方法。简单来说,如果两个流形的陈氏类不同,它们就不可能相同;反之却不一定成立:两个不同的流形可能具有相同的陈氏类。

复一维的黎曼面只有一个陈氏类,即第一陈氏类,而对于这个情况,正好等于欧拉示性数。一个流形的陈氏类数目,视其维数而定,例如复二维的流形具有第一和第二陈氏类。至于弦论所关心的复三维(或实六维)流形,则有三个陈氏类。它的第一陈氏类为六维空间中的实二维子空间(子流形)各对应到一整数,其中所谓子空间是原空间的一部分形体,就像纸张(二维)可以摆在办公室(三维)里一样。类似地,第二陈氏类为空间中的实四维子流形各对应一整数。第二陈氏类则为这个复三维(或实六维)的流形本身指定一个数字,也就是欧拉示性数x。事实上,对于任何复n维的流形,它的最后一个,亦即第n个陈氏类必定对应到流形的欧拉示性数。

但陈氏类究竟告诉了我们什么?或者说,指定这些数字的目的何在?其实这些数对于子流形本身并没提供多少信息,但是对于整个流形,它们却透露出许多重要的讯息。这在拓扑学是很常见的:当要了解复杂、高维的物体结构时,我们经常检视此物体中的子物体的数目和类型。

打个比方,假设你给身在美国的每个人都编上不同编号。那么,为个人指定的数字丝毫无助于理解他或她本人,但若把这些数字汇总起来,就可以呈现出更大的“物体”——美国本身——的重要情报,例如人口规模、人口成长率等。

我们还可以再举一个具体实例,来解释这个相当抽象的概念。让我们依照惯例,从很简单的物体开始。球面是一个复一维或实二维的曲面,它只有一个陈氏类,在这个情况等于欧拉示性数。回想一下,我们在第2章讨论过,居住在球形行星上时,关于气象学和流体力学的一些影响。例如风有没有可能在地表上的每一点都是由西向东吹?在赤道以及赤道之外的任何纬度线,都很容易想象风如何向东吹。但是在南极和北极的极点(这两点可以被视为奇点),却根本没有风,这是球面几何的必然结果。对于这种有着明显例外的特殊点的曲面,它的第一陈氏类不等于零。

第一陈氏类(对于本图中的二维曲面来说,正好等于欧拉示性数)与向量场中流动停滞的地方有关。在像地球的球面上,我们可以看到两个这样的点。如果流动是从北极往南极流(左上图),在两个极点上,所有表示流动的向量会彼此抵消,因此净流动为零。同理,如果流动是由西向东(右上图)还是会有两个根本没有流动的停滞点,同样又是出现在北极点和南极点,因为在此根本没有西向、东向可言。如果是环面,情形就不同了。在此,流动可以是铅直的(左下图)或水平的(右下图),都不会遇到停滞点。由于环面上的流动没有奇点,所以它的第一陈氏类是零,而球面的则不是零。

骑士书屋推荐阅读:重生:第一玩家全民穿越,异世界求生网游之我的属性百倍成长吞掉一万只哥布林后,我无敌了!别反野了,对面打野都哭了!金币爆率100倍,我骄傲了吗?大家都在艰难求生,凭什么你开挂网游:有五个神职姐姐的我,无敌网游:从暴打隔壁校花开始网游:怪物降临现实阁下如何应对唐俏儿沈惊觉异界全能领主就算是假千金也要勇敢摆烂杏坛一笑我的三战充满玄学NBA得分后卫养成记末日游戏:开局获得荒野的呼唤网游之我的属性变变变史上最强青训选手碟战,我能分辨日碟NBA的下一个答案生存游戏,别人啃草她吃肉带着玩家在赛博世界闹革命kenshi 漂泊终地异界求生被我玩成了冒险开局福星附身,所有技能增强!DNF之异界鬼剑士全民求生:我是地窟第一猛男梦幻西游:开局第一无级别绝区零:我是个很普通的人篮球:系统新手任务,隔扣大鲨鱼网游:盲人刺客杀穿异界NBA:从偷吃库里爆米花始无敌纵漫,从02的世界开始强化网游:蜕变之路联盟:我,重新定义辅助!10投必中8,你管这叫中投挂?篮球,人生联盟三千年震惊:暮年詹姆斯依旧吊打全联盟夏初见易楠平的小说全文免费阅读无弹窗万古帝婿夜玄LOL:青铜之上我无敌诸天:我的属性无限成长从荒岛开始争霸被弃养后,我靠玄学直播爆红了苏缈苏喻言全本免费阅读斗罗,绝世之神我的玩家都是演技派校花的神级高手
骑士书屋搜藏榜:全民航海求生,开局一艘冥王号轮回乐园之投影三枪追魂穿越者公敌领主降临:从选择身份开始对别人的男宠一见钟情超神:四舍五入我老婆是三王宅在游戏当大侠重生八零完美逆袭星穹铁道:生命因何叹息我是巅峰BOSS新还珠传奇之风云再起七十一变[综]都市之纵意花丛丧尸末世,但是在大唐NBA:爱发推特的我统治了联盟游戏制作从负债千万开始全球降临:浮空岛无限战争清歌煮酒林小北的游戏赚钱生涯从黑袍开始成为究极生物全民大航海,我开局一条幽灵船卢米安莉雅的小说免费阅读眼睛一闭一睁,无限我来啦九州天王叶凌天周雪青夏初见易楠平全文免费阅读完整版LCK的中国外援最后的地球战神怪猎聊天群DNF圣职者转生异界为爱延续大神捂紧你的小马甲网游之海盗王木叶有妖气全球游戏:无敌氪金系统斗罗:被读心后成了武魂殿团宠墨门飞甲网游:我的道具能具现斗破之我让魂族从了良网游之剑气无双美女总裁的护花保镖李南神话天书战龙归来林北逆战之大枪神我叫欧楚良斗破:家祖玄帝萧玄LOL系统:从扮演刀妹开始墨迹诸天极品豪婿植僵大陆:我的农场也太全面了吧
骑士书屋最新小说:四合院:傻柱重生,娶妻陈雪茹综影视:一见钟情再见倾心亮剑:开局手搓飞雷炮,老李乐疯了!足坛中场神!世一中横空出世综影视,准备好了吗?木心来也!传奇法爷:开局隐身戒指三角洲:穿成铁驭开局加入赛伊德深海进化:从鲨鱼到群鲨之父!三角洲:我是系统人机?将军啊!聊天群:骷髅岛靓仔的诸天之旅在尘埃之上:米兰球神纪制霸NBA:从落选秀到超级巨星萌学园:时空之轮穿越古代成了女帝1910从岭南走出的军阀头子首席指挥官的自我修养女装学霸逆袭电竞巅峰嬿婉传:本宫踩碎凤冠登帝位火影:我纲手之夫,统战木叶名学密神:因为遇见你山海经中山的故事带着外挂,她在万族战场杀疯了神印:小公主她又争又抢想当魔皇火影:我宇智波,选择做老曹穿书六零:军婚后的平淡日子领主之吞噬进化八零遭恶亲算计,我主打六亲不认棋王林默足球:奇葩任务,开局震惊德意志普攻斩杀,我全点攻速你不炸了?全民转职:我有亿万神将!网游:玩家氪金我返现,卷哭神豪异界的灵魂在迷宫末世世界求生战锤40K:四小贩的梦想神选迷雾纪元:我的木屋能吞噬万物高达08MS小队同人:托璞重生说好的综漫世界,漫威是什么鬼?境界触发者!迟暮玩家和骚话前辈搭档是种工伤战斗精灵?这不是宝可梦吗?镇邪也镇你满级传球,从多特青训杀穿全欧四合院:参军归来,我教众禽做人荒岛求生之我的入职考试LOL:变身美少女,吊打全世界七零,军官老公怀疑人生了三国:诸天帝王,收名将纳美姬崩坏模拟器,但是废柴流浪传奇:废土打金手册