骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

1978年,数学家发现了一种十分“脆弱”的素数,任意改变其一位数就会变成合数,它们被称为“易损素数”。

近期,数学家找到了更多的“易损素数”,而这一概念也被再一次扩展……

让我们来看看以下几个数字,试试看能否发现它们的特别之处:、、。

你可能会注意到它们都是素数(只能被自己和1整除),但其实这几个数的不寻常之处远不止如此。如果我们选取这几个数字中的任意一位进行更改,新得到的数字就成为了一个合数,比如将中的1改成7,那么得到的数字就可以被7整除,改成9,则可以被3整除。

这些数字被称为“易损素数”,它们是相对较新的数学发现。1978年,

数学家默里·克拉姆金(murray Klamkin)提出了这一类素数的猜想,之后迅速得到了有史以来发表论文数量最多的数学家保罗·埃尔德什(paul Erd?s)的回答,他不仅证明了易损素数确实存在,而且证明了它们的数量是无限的。后来,其他数学家进一步扩展了埃尔德什的结果,其中就包括菲尔兹奖章得主陶哲轩,他在2011年的一篇论文中证明了易损素数之间是呈“正比例”的。这意味着,随着素数本身变大,连续两个易损素数之间的平均距离保持稳定。也就是说,易损素数并不会变得越来越稀少。

在近期发表的两篇论文中,南卡罗来纳大学的迈克尔·菲拉塞塔(michael Filaseta)更进一步地阐述了这一观点,并提出了一类结构更为精妙的易损素数。

他受到埃尔德斯和陶哲轩工作的启发,设想将一个无限长的前导零串作为素数的一部分,就像数字53和…0000053的值是一样的,那么如果改变一个易损素数前无限的零中的任意一个,素数会变合数吗?菲拉塞塔假定这些数字是存在的,并将其称为“广义的易损素数”。

2020年11月,他与研究生耶利米·索斯威克(Jeremiah Southwick)共同发表了一篇论文来探究这些数字的性质。这项结果得到了乔治亚大学数学系教授保罗·波拉克(paul pollack)的盛赞。

显而易见,这样的数字比原来的易损素数更加难找。波拉克说:“是一个易损素数,但并不是一个广义上的易损素数,因为如果我们把…000变为…0,得到的并不是合数,而是另一个素数。

事实上,菲拉塞塔和索斯威克找遍了1 000 000 000以内的所有整数,也没有在十进制下找任何一个广义的易损素数。然而,这并没有阻止他们继续寻找的脚步。

经过不懈的探索,他们证明了这样的数字在十进制的情况下确实是可能存在的,而且还会有无穷多个。更进一步,他们还证明了广义的易损素数同样是呈正比例的,就像陶哲轩的结论那样。之后,在索斯威克的博士论文中,他在2、9、11和31进制上获得了相同的结果。波拉克对这些发现印象深刻,他说:“对于这些数字,你可以做无限多可能的改变,然而不管你做哪一个改变,你得到的始终是一个合数。”

证明过程主要依靠两种工具,第一种被称为覆盖同余(covering systems),是由埃尔德什在1950年发明的,目的是解决一个数论中的问题。索斯威克说:“覆盖同余能够提供大量的分组,同时保证每个正整数至少在其中一个分组中。”例如,如果将所有正整数除以2,我们就能得到两个分组:一组偶数,一组奇数。这样即可“覆盖”所有的正整数,而在同一组内的数字则被认为彼此是“一致”的。当涉及的数字量十分大时,也就是面对寻找广义易损素数时,情况会显得更为复杂。我们需要更多的分组,大约个,在这些分组内的每一个素数都要保证,在增加了任意一位的数字,包括前面的零之后,能够变成合数。

但为了找到广义的易损素数,这些数中的任何一位数字减少后,也必须变成合数。这就是第二种工具,称为筛分法。筛分法最早可以追溯到古希腊,它提供了一种计算、估计或设置满足某些性质的整数个数限制的方法。菲拉塞塔和索斯威克使用了一个筛分参数,类似于陶哲轩在2011年采用的方法,也就是如果你在前面提到的组中取素数并减少其中的一个数字,会有呈正比的素数变成合数。换言之,广义的易损素数也是呈正比的。

然后,在一月份的一篇论文中,菲拉塞塔和他现在的研究生雅各布·朱伊拉特(Jacob Juillerat)提出了一个更加惊人的观点:存在任意长的连续素数序列,其中每个数字都是广义的易损素数。例如,有可能找到10个连续的广义易损素数。但这必须得检验大量的素数,菲拉塞塔说,“这一数量可能比可观测宇宙中的原子数还要多。”他把这比作连续10次中彩票,虽然概率特别小,但是依旧是有可能的。

菲拉塞塔和朱伊拉特分两个阶段证明了他们的定理。首先,他们使用覆盖同余来证明存在一个包含无限多个素数的分组,分组内的所有数字都是易损素数。在第二步中,他们应用了丹尼尔·邵(daniel Shiu)于2000年证明的一个定理:在所有的素数中,存在任意数量的连续素数属于上述的分组中。这也就能够进一步说明,这些连续的素数必然是广义的易损素数。

达特茅斯学院的卡尔·波默朗斯(carl pomerance)非常喜欢这些论文,他称赞菲拉塞塔是应用覆盖同余的大师。同时,他还指出,用十进制来表示一个数字可能会很方便,但这并不符合数字的本质。他认为,还有更基本的方法来表示数字,比如梅森素数的定义——素数p的表现形式为2p–1的素数。

在之前的研究基础上,最近的一些相关论文提出了更多值得探讨的问题。比如,每一种进制下是否都存在广义的易损素数?当在两个数字之间插入一个数字,而不是仅仅替换一个数字时,是否会有无穷多的素数变成合数?

此外,波默朗斯还提出了另一个有趣的问题:当数字接近于无穷大时,是否所有的素数都会变为(广义)易损素数?这是否也就意味着,非(广义)易损的素数个数是有限的?尽管他和菲拉塞塔都还没有想到办法来证明这个猜想。

波默朗斯说:“数学研究的魅力就是你事先不会知道你是否能够解决一个具有挑战性的问题,或者这个问题是否是有意义的。就像你不能提前决定:今天我要做一些有价值的事情,因为你不知道在数学研究中,什么事情才是有价值的,你只能去不断思考,不断尝试。”

骑士书屋推荐阅读:重生:第一玩家全民穿越,异世界求生网游之我的属性百倍成长吞掉一万只哥布林后,我无敌了!篮坛圆梦大师:我带你们拿冠军莲花楼之我带花花去修仙别反野了,对面打野都哭了!金币爆率100倍,我骄傲了吗?大家都在艰难求生,凭什么你开挂网游:有五个神职姐姐的我,无敌网游:从暴打隔壁校花开始网游:怪物降临现实阁下如何应对唐俏儿沈惊觉异界全能领主就算是假千金也要勇敢摆烂杏坛一笑我的三战充满玄学NBA得分后卫养成记末日游戏:开局获得荒野的呼唤网游之我的属性变变变史上最强青训选手碟战,我能分辨日碟NBA的下一个答案智慧的明灯与心灵的指引生存游戏,别人啃草她吃肉带着玩家在赛博世界闹革命kenshi 漂泊终地异界求生被我玩成了冒险开局福星附身,所有技能增强!DNF之异界鬼剑士全民求生:我是地窟第一猛男梦幻西游:开局第一无级别绝区零:我是个很普通的人篮球:系统新手任务,隔扣大鲨鱼综网的巫:从艾泽拉斯吃到山海经网游:盲人刺客杀穿异界NBA:从偷吃库里爆米花始无敌纵漫,从02的世界开始强化网游:蜕变之路联盟:我,重新定义辅助!10投必中8,你管这叫中投挂?叶凌天周雪青九州天王免费阅读全文自来也豪杰物语:原神篇篮球,人生冷青衫最新小说联盟三千年震惊:暮年詹姆斯依旧吊打全联盟夏初见易楠平的小说全文免费阅读无弹窗万古帝婿夜玄LOL:青铜之上我无敌
骑士书屋搜藏榜:全民航海求生,开局一艘冥王号轮回乐园之投影三枪追魂穿越者公敌领主降临:从选择身份开始对别人的男宠一见钟情超神:四舍五入我老婆是三王宅在游戏当大侠重生八零完美逆袭我是巅峰BOSS新还珠传奇之风云再起七十一变[综]都市之纵意花丛丧尸末世,但是在大唐NBA:爱发推特的我统治了联盟游戏制作从负债千万开始全球降临:浮空岛无限战争清歌煮酒林小北的游戏赚钱生涯从黑袍开始成为究极生物全民大航海,我开局一条幽灵船卢米安莉雅的小说免费阅读眼睛一闭一睁,无限我来啦九州天王叶凌天周雪青夏初见易楠平全文免费阅读完整版LCK的中国外援最后的地球战神怪猎聊天群DNF圣职者转生异界为爱延续大神捂紧你的小马甲网游之海盗王木叶有妖气全球游戏:无敌氪金系统斗罗:被读心后成了武魂殿团宠墨门飞甲网游:我的道具能具现斗破之我让魂族从了良网游之剑气无双美女总裁的护花保镖李南神话天书战龙归来林北逆战之大枪神我叫欧楚良斗破:家祖玄帝萧玄LOL系统:从扮演刀妹开始墨迹诸天极品豪婿植僵大陆:我的农场也太全面了吧NBA数据自由定制,谗哭科詹库
骑士书屋最新小说:网游之御兽苍穹疯狂奥术师人在海贼,逛街逛到顶上战争望舒月神快穿:三千世界修罗场厌世的我和穷追猛打的他在一起了笔名张三,我的作品火遍盗笔世界王者:巅峰2100真能打职业啊末世:人坏被人妻满级玩家的第一百次回归火影:开局觉醒无限瞳术从一人开始修行,我要弹反一切四合院:先下手为强赤红之瞳,DNF双体圣女纪行相亲当天,豪门继承人拉我回家四合院开局脚踢贾东旭断亲何雨水TNT:燃烧少年的夏天七零独生女我妈资本家我爸老司机转生萝莉:变身虫族女皇!京圈少爷的工地变形计量子游戏没有爱超神:暗影大帝降临斗罗:宁荣荣重生,开局双生武魂我的青春恋爱物语问题有点大魔炎丫鬟谋权:从宫闱走向盛世若曦重生:带系统击穿甄嬛传后宫崩坏,我才不是魅魔啊!清冷炮灰?小黑屋在向你招手祈愿!寂静前的烟火,我看见了!星轨共生体【无限】啊?我收主神?重生之我在云都偷心三千次崩坏,镜流的王者大师兄海贼:国服路飞不给就送!喂!亲一口,命给你!社畜玄学直播打脸王红楼梦断,水浒情长:穿越之旅LOL:全能AD和他的四个挂件四合院之重走来时路结局大不同网游之重生开天全世界都想我和前搭档复合网游:全职召唤师九霄灵枢:量子修真纪元崩铁观影:太一?阿哈不许复活神兵天降之打鬼子赘婿逆袭:商业神级系统刑侦:他又在凶案现场偷亲我天幕:狐妖小红娘明明是杰克的我为什么会在柯南啊