骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的 cramer 悖论就是一个漂亮的例子。

在描述 cramer 悖论之前,让我们先来考虑一个简单的情况。

两条直线交于一点。

反过来,过一点可以做两条不同的直线。

事实上,过一点可以做无数条直线。

确定一条直线需要两个点才够。

一切都很正常。

现在,考虑平面上的两条三次曲线。

由于将两个二元三次方程联立求解,最多可以得到 9 组不同的解,因此两条三次曲线最多有 9 个交点。另外,三次曲线的一般形式为

x^3 + a·x^2·y + b·x·y^2 + c·y^3 + d·x^2 + e·x·y + f·y^2 + g·x + h·y + i = 0

这里面一共有 9 个未知系数。

代入曲线上的 9 组不同的(x, y),我们就能得出 9 个方程,解出这 9 个未知系数,恢复出这个三次曲线的原貌。

也就是说,平面上的 9 个点唯一地确定了一个三次曲线。

这次貌似就出问题了:“两条三次曲线交于 9 个点”和 “ 9 个点唯一地确定一条三次曲线”怎么可能同时成立呢?

既然这 9 个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?

在没有线性代数的年代,这是一个令人匪夷所思的问题。

cramer 和 Euler 是同一时代的两位大数学家。

他们曾就代数曲线问题有过不少信件交流。

上面这个问题就是 1744 年 9 月 30 日 cramer 在给 Euler 的信中提出来的。

在信中, cramer 摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用 9 个点唯一地确定下来,两条三次曲线可能产生出 9 个交点。

cramer 向 Euler 提出了自己的疑问:这两个结论怎么可能同时成立呢?

Euler 心中的疑问不比 cramer 的少。

接下来的几年里,他都在寻找这个矛盾产生的源头。

1748 年, Euler 发表了一篇题为 Sur une contradiction apparente dans la doctrine des lignes courbes (关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。

正如大家所想,矛盾的源头就是, 9 个点不见得能唯一地确定出三次曲线的方程,因为不是每个点的位置都能给我们带来足够的信息。

Euler 试图向人们解释这样一件事情:曲线上的 9 个点虽然给出了 9 个不同的方程,但有时它们并不能唯一地解出那 9 个未知数,因为有些方程是废的。

在没有线性代数的年代,解释这件事情并不容易。

Euler 举了一个最简单的例子:方程组

3x ? 2y = 5

4y = 6x ? 10

表面上存在唯一解,但事实上两个方程的本质相同——第一个方程乘以 2 再移项后就直接变成第二个方程了。

换句话说,后一个方程并没有给我们带来新的信息,有它没它都一样。

当然,这只是一个最为简单的例子。

在当时,真正让人大开眼界的则是 Euler 文中给出的三元一次方程组:

2x ? 3y + 5z = 8

3x ? 5y + 7z = 9

x ? y + 3z = 7

这个方程组也没有唯一解,原因就很隐蔽了:后两个方程之和其实是第一个方程的两倍,换句话说第一个方程本来就能由另外两个方程推出来。

因此,整个方程组本质上只有两个不同的方程,它们不足以确定出三个未知数来。

Euler 还给出了一个四元一次方程组的例子,向人们展示了更加复杂的情况。

类似地, 9 个九元一次方程当然也会因为出现重复信息而不存在唯一解,不过具体情况几乎无法预料:很可能方程(1)就是方程(2)和方程(5)的差的多少多少倍,也有可能方程(7)和(9)的差恰是前三个方程的和。

究竟什么叫做一个方程“提供了新的信息”,用什么来衡量一个方程组里的信息量,怎样的方程组才会有唯一解?

Euler 承认,“要想给出一个一般情况下的公式是很困难的”。

此时大家或许能体会到, Euler 提出的这些遗留问题太具启发性了,当时的数学研究者们看到之后必然是浑身血液沸腾。

包括 cramer 在内的数学家们沿着 Euler 的思路继续想下去,一个强大的数学新工具——线性代数——逐渐开始成型。

没错,这个 cramer 正是后来提出线性代数一大基本定理—— cramer 法则——的那个人。

骑士书屋推荐阅读:重生:第一玩家全民穿越,异世界求生网游之我的属性百倍成长吞掉一万只哥布林后,我无敌了!别反野了,对面打野都哭了!金币爆率100倍,我骄傲了吗?大家都在艰难求生,凭什么你开挂网游:有五个神职姐姐的我,无敌网游:从暴打隔壁校花开始网游:怪物降临现实阁下如何应对唐俏儿沈惊觉异界全能领主就算是假千金也要勇敢摆烂杏坛一笑我的三战充满玄学NBA得分后卫养成记末日游戏:开局获得荒野的呼唤网游之我的属性变变变史上最强青训选手碟战,我能分辨日碟NBA的下一个答案生存游戏,别人啃草她吃肉带着玩家在赛博世界闹革命kenshi 漂泊终地异界求生被我玩成了冒险开局福星附身,所有技能增强!DNF之异界鬼剑士全民求生:我是地窟第一猛男梦幻西游:开局第一无级别绝区零:我是个很普通的人篮球:系统新手任务,隔扣大鲨鱼网游:盲人刺客杀穿异界NBA:从偷吃库里爆米花始无敌纵漫,从02的世界开始强化网游:蜕变之路联盟:我,重新定义辅助!10投必中8,你管这叫中投挂?篮球,人生联盟三千年震惊:暮年詹姆斯依旧吊打全联盟夏初见易楠平的小说全文免费阅读无弹窗LOL:青铜之上我无敌诸天:我的属性无限成长从荒岛开始争霸被弃养后,我靠玄学直播爆红了苏缈苏喻言全本免费阅读斗罗,绝世之神我的玩家都是演技派校花的神级高手我是巅峰BOSS
骑士书屋搜藏榜:全民航海求生,开局一艘冥王号轮回乐园之投影三枪追魂穿越者公敌领主降临:从选择身份开始对别人的男宠一见钟情超神:四舍五入我老婆是三王宅在游戏当大侠重生八零完美逆袭星穹铁道:生命因何叹息我是巅峰BOSS新还珠传奇之风云再起七十一变[综]都市之纵意花丛丧尸末世,但是在大唐NBA:爱发推特的我统治了联盟游戏制作从负债千万开始全球降临:浮空岛无限战争清歌煮酒林小北的游戏赚钱生涯从黑袍开始成为究极生物全民大航海,我开局一条幽灵船卢米安莉雅的小说免费阅读眼睛一闭一睁,无限我来啦九州天王叶凌天周雪青夏初见易楠平全文免费阅读完整版LCK的中国外援最后的地球战神怪猎聊天群DNF圣职者转生异界为爱延续大神捂紧你的小马甲网游之海盗王木叶有妖气全球游戏:无敌氪金系统斗罗:被读心后成了武魂殿团宠墨门飞甲网游:我的道具能具现斗破之我让魂族从了良网游之剑气无双美女总裁的护花保镖李南神话天书战龙归来林北逆战之大枪神我叫欧楚良斗破:家祖玄帝萧玄LOL系统:从扮演刀妹开始墨迹诸天极品豪婿植僵大陆:我的农场也太全面了吧
骑士书屋最新小说:虚拟纪元往事网游:开局获得混沌体系统为我氪金后,大佬成榜一大哥四合院:傻柱重生,娶妻陈雪茹综影视:一见钟情再见倾心亮剑:开局手搓飞雷炮,老李乐疯了!足坛中场神!世一中横空出世综影视,准备好了吗?木心来也!传奇法爷:开局隐身戒指三角洲:穿成铁驭开局加入赛伊德深海进化:从鲨鱼到群鲨之父!三角洲:我是系统人机?将军啊!聊天群:骷髅岛靓仔的诸天之旅在尘埃之上:米兰球神纪制霸NBA:从落选秀到超级巨星萌学园:时空之轮穿越古代成了女帝1910从岭南走出的军阀头子首席指挥官的自我修养女装学霸逆袭电竞巅峰嬿婉传:本宫踩碎凤冠登帝位火影:我纲手之夫,统战木叶名学密神:因为遇见你山海经中山的故事带着外挂,她在万族战场杀疯了神印:小公主她又争又抢想当魔皇火影:我宇智波,选择做老曹穿书六零:军婚后的平淡日子领主之吞噬进化八零遭恶亲算计,我主打六亲不认棋王林默足球:奇葩任务,开局震惊德意志普攻斩杀,我全点攻速你不炸了?全民转职:我有亿万神将!网游:玩家氪金我返现,卷哭神豪异界的灵魂在迷宫末世世界求生战锤40K:四小贩的梦想神选迷雾纪元:我的木屋能吞噬万物高达08MS小队同人:托璞重生说好的综漫世界,漫威是什么鬼?境界触发者!迟暮玩家和骚话前辈搭档是种工伤战斗精灵?这不是宝可梦吗?镇邪也镇你满级传球,从多特青训杀穿全欧四合院:参军归来,我教众禽做人荒岛求生之我的入职考试LOL:变身美少女,吊打全世界七零,军官老公怀疑人生了