骑士书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

用故事解释:权重参数学习的过程

故事背景:烘焙比赛中的甜点大师

想象你是一位甜点师,参加了一场全国甜点比赛。你的任务是做出一款完美的蛋糕。评委会根据蛋糕的味道和口感评分,而你需要在有限的时间内不断调整配方,让蛋糕变得更美味。

第一步:初始化——第一次尝试配方

你刚开始时并没有确切的蛋糕配方,只是随机抓了一些面粉、糖、鸡蛋和牛奶。你把它们混合在一起,烤出了一个蛋糕。

这个蛋糕代表了模型的第一次预测结果,而你用的食材比例就是模型的初始权重参数。

第二步:前向传播——评委品尝蛋糕

评委们尝了一口你的蛋糕,给出了反馈。味道可能太甜、太干或者不够松软。评委的评分就是损失函数,它告诉你蛋糕和完美口感之间的差距。

第三步:计算损失——衡量你的差距

你根据评委的评分计算出蛋糕的失败程度。这类似于机器学习中用损失函数来衡量预测结果和真实结果的差距。

比如:

? 如果蛋糕太甜 → 糖的比例太高,说明糖的“权重”过大。

? 如果蛋糕太硬 → 面粉太多,可能需要减少面粉的“权重”。

? 如果蛋糕不够香 → 鸡蛋或牛奶的比例太少,增加它们的“权重”会更好。

第四步:反向传播——寻找问题所在

你回忆自己放入了多少糖、鸡蛋和面粉,并且思考每一种食材对最终味道的影响。这个过程就像反向传播,追踪每个决定带来的结果,并计算出哪些调整能让蛋糕变得更好。

第五步:权重更新——调整配方

根据评委的反馈,你决定做一些调整:

? 减少糖:让蛋糕不那么甜。

? 增加牛奶:让蛋糕更湿润。

? 减少面粉:让蛋糕更松软。

这一步对应于梯度下降,你调整权重参数,使下一次的损失变小。

第六步:重复训练——逐步优化

你不断尝试新的配方,每一次都比之前的蛋糕稍微好一些。随着多次迭代,蛋糕的评分逐渐提高。直到评委满意地说:“这就是我想要的味道!”

在机器学习中,当模型的损失函数下降到满意的程度时,模型训练完成。这时,你的蛋糕配方(即权重参数)就是最优解。

?

用比喻解释:权重参数学习的过程

把机器学习中的权重参数学习想象成一个人在黑暗中寻找山顶的过程。

1. 初始化:盲人探路

你被蒙上眼睛,放在一座未知的山脚下。你不知道山顶在哪里,只能凭借直觉选择一个方向出发。

? 你的起点:模型的初始权重参数。

? 目标山顶:最低的损失函数。

2. 前向传播:一步步行走

你迈出第一步,试着感受地形。

? 如果地势变陡了,说明你可能走错方向了。

? 如果地势变平缓或向下,说明你可能朝着正确的方向前进。

? 每走一步,你都会评估自己与山顶的距离(就像模型在计算预测误差)。

3. 计算损失:测量高度差

你带着一个测高仪,随时测量当前位置与山顶的高度差。这个高度差越小,你就越接近目标。

? 高度差就是损失函数。

? 高度测量让你知道自己需要继续调整方向。

4. 反向传播:调整方向

如果你发现前方越来越陡峭,你会停下来,回顾自己走过的路,判断哪个方向让高度减少得更快。这个思考过程类似于反向传播,通过计算哪一步导致了最大的高度增加,从而调整下一步的方向。

5. 权重更新:调整步伐

你根据测高仪的反馈,决定换一个方向前进。

? 如果高度迅速下降,你知道这是正确的方向,就继续前进。

? 如果高度反而上升,你会重新调整方向。

? 每次调整方向都像是对权重参数的更新。

6. 多次迭代:逐步找到最优路径

经过无数次的调整和修正,你终于找到了山顶。此时的方向选择和步伐调整正好对应于模型找到最佳权重参数的过程。

在实际应用中,机器学习通过不断调整参数,减少损失函数的值,最终找到最优的参数组合,使模型对新数据的预测更加准确。

?

总结

? 训练数据是甜点比赛中的食材,模型通过这些数据不断学习如何优化蛋糕配方。

? 权重参数是配方中的糖、面粉、鸡蛋的比例,它们决定最终的口感。

? 损失函数是评委给出的分数,用于衡量蛋糕的好坏。

? 前向传播是你烤出蛋糕并让评委品尝的过程。

? 反向传播是你分析失败原因,并决定如何调整配方。

? 权重更新是你根据反馈改进配方的过程。

? 多次迭代是不断尝试和优化,最终达到最佳状态。

通过这样的故事和比喻,相信你对机器学习中权重参数学习的原理有了更加直观的理解!

骑士书屋推荐阅读:四合院:我傻柱,开局迎娶冉秋叶家人们谁懂,这海军怎么是个混混异境逆袭:我命由我,不由天顶流开局,制霸娱乐圈富豪从西班牙开始退圈考回冰城,引来一堆小土豆清冷校花?不熟,但她喊我少爷!娱乐:说好假结婚杨老板你认真了重生之纯真年代阡陌中的荒灵带着搬家石游三界祸水之妻我可是反派,主角妈妈注意点带着空间穿八零,领着家人奔小康反派:不当舔狗后女主怪我变心?让你代管殡仪馆,你竟让地府降临宗门仅剩的独苗谍战:我黄埔高材生,去底层潜伏提前登录!重生的我怎么输?双穿:我是地球OL内测玩家我当军户媳妇的那些年铁锹配大锅,一锅炒菜七万多都市小保安的蜕变四合院之达则兼济天下灵气复苏,我十年成帝,杀光异族无尽末日内的干涉者灵气复苏:我能召唤铠甲绝代天师:人前显圣被刘天仙曝光我在神学的世界写三体太空大陆娱乐:京圈少爷的我成顶流了?变身少女拯救世界?我只想摆烂!我领悟万千剑道,一剑屠神!神豪从关注女主播开始特级保安禁咒?快加油,你肯定能破我防御最强欺骗系统,自爆我就是修仙者怒怼多国名场面,我成护国狂魔仙山灵水话青梅末日:我修仙拽一点怎么了惩治邪恶重来一世,天降比不过青梅人人都爱大箱子娱乐:修仙至尊改混娱乐圈史上最牛神豪离婚后总裁前妻很抢手重生之再无遗憾重生92年我在海外立国山村尤物俏美妇
骑士书屋搜藏榜:[快穿]小受总是在死娱乐圈火爆天王战神赘婿:黄海平科技供应商重生:从叫错女同桌名字开始让你上大学,你偷偷混成首富薄先生的专属影后又美又娇带着修为回地球,全家随我飞升了我的女孩在灯火阑珊处医路人生:一位村医的奋斗之路重生嫡女归来最强赘婿霸宠甜甜圈:夜少,别乱撩我真不想当大明星地球online我开启世界大战港综:曹达华在我身边卧底特种兵:林老六竟然是狼牙总教官我家夫人今天听话了吗陈西峰商路笔记农门长嫂有空间抓鬼小农民农家俏寡妇:给五个孩子当娘都市极品保镖奶爸的超级农场穿书九零,大佬的炮灰前妻觉醒了穿成女配后我和权臣成亲了滑稽主播风雨兼程的逆袭路娱乐:让你介绍自己,你介绍家底重生之事事顺意限量婚宠:报告军长,我有了真千金断亲随军,禁欲大佬日日宠神界红包群撩妻1001式:席少,深度爱!影帝请你不要再吸我了喵公主殿下太妖孽黑道往事:从劳改犯到黑道传奇!重生之并蒂金花BOSS来袭:娇妻花式溺宠逆风三十岁重生高中校园:男神,撩一撩这个道士不靠谱村色撩人明朝大纨绔我向斐少撒个娇娇妻送上门:楚少请签收高中退学一年后,我被大学特招!修仙浪都市宝可梦供应商重生后,我娶了未来的县委书记
骑士书屋最新小说:生长新歌重生09:我为财富之王权势巅峰:从省纪委秘书开始女子监狱走出后,我医武双绝震惊世界!开局顶替流量巨星,全网火爆贬妻为妾?我二嫁权臣联手虐渣谁说华夏无神?外神亦是神!年代美人娇又媚,勾的糙汉心尖颤从不空军的钓场!钓鱼圈彻底失控了假死三年,我竟成了冰山女神的协议老公潜艇厨子:透视深海,我即是天眼至尊少年王踏出SSS女子监狱,我医武双绝娘娘又娇又媚,一路宫斗上位恶毒公主摆烂后,五个大佬追疯了穿进侯府当后妈后每天都想和离战神归来:与我为敌,统统灭族!重生1985:从收猴票开始首富之路田园乱人心重回1991乔总别傲了,易小姐改嫁生三胎了都重生了谁还白手起家,我选择当富二代重生御兽,立志躺平却被女神契约重生换娘亲,炮灰成了名门贵女锦医春色火红年代,这个小公安有情报系统快穿归来,网黑真千金杀穿娱乐圈乡下来的真千金,竟是玄学大佬替弟从军五载,归来全家夺我军功?全球高武:我背后一口棺,专业的捡尸随母改嫁旺新家,重生嫡女嘎嘎乱杀出道十年查无此人,圈内全是我前任?重回1960:渔猎白山松水我和富二代灵魂互换城市求生之牛小二的奇葩人生四合院:易中海的养老心思,被我扒个底婢女扶瑶我带小萝莉找上门,校花无痛当妈去父留子的夫君竟想我为妾看到弹幕后,我爬了皇帝的床尚书千金投井后通灵?全京城慌了神医农女:我靠种田富甲天下七零随军:穿书作精她撩又甜重生后另择良婿,王爷红眼求名分踏出女子监狱后,三千囚徒誓死追随都市:女儿重生后,我成互联网教父了重生08:从拿下极品校花开始重生70,从给妻女煮碗白粥开始仕途风云:升迁消失三年回归,九个女总裁为我杀疯了